Double-pass erbium-doped zirconia fiber amplifier for wide-band and flat-gain operations

نویسندگان

  • S. W. Harun
  • A. Hamzah
  • S. K. Bhadra
  • H. Ahmad
  • S. Yoo
  • M. P. Kalita
  • A. J. Boyland
  • J. K. Sahu
چکیده

The double-pass erbium-doped zirconia fiber amplifier (EDZFA) is proposed and demonstrated to provide a wide-band amplification as well as flat-gain operation in both the Cand L-band regions using only a single-gain medium. The proposed amplifier utilizes an erbium-doped zirconia fiber (EDZF) with erbium ion concentration of 2800 ppm as a gain medium. The medium is fabricated in a ternary glass host, zirconia–yttria–aluminum codoped silica fiber through solution doping technique along with modified chemical vapor deposition (MCVD). Compared to a single-pass operation, the doublepass EDZFA shows a better gain performance. At input signal power of 0 dBm and the optimum EDZF length of 2 m, a flat gain of around 16 dB is achieved by the proposed double-pass amplifier with gain variation of approximately 2.5 dB throughout the wavelength range from 1530 to 1590 nm. However, the noise figure of the double-pass amplifier is slightly higher than that of the single-pass due to inefficient population inversion at the input part of the amplifier. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of Raman Gain in Reduced Length of Bismuth Erbium Doped Fiber

Raman amplification of a 49 cm Bismuth oxide (Bi2O3) as a nonlinear gainmedium based erbium doped fiber amplifier (EDFA) is reported in new and compactdesign in near infrared spectral regions. The bismuth glass host provides theopportunity to be doped heavily with erbium ions to allow a compact optical gain fiberamplifier design by using reduced fiber length and the 1480...

متن کامل

[ME01] An Efficient and Low Noise L-band Erbium-Doped Fiber Amplifier

Introduction The use of the long-wavelength-band (Lband) is attractive for both increasing the capacity of wavelength division multiplexing (WDM) systems and has been used in WDM transmission experiments at over 1 Tb/s. Recently, a gain bandwidth of about 80nm has been achieved by integrating the L-band EDFA in parallel with conventional band (Cband) EDFA [1]. Moreover, the L-band EDFAs will ma...

متن کامل

Gain, Noise Figure and Efficiency Characteristics of an L-Band Erbium Doped Fiber Amplifier

In this work, the construction of a single stage L-band erbium-doped fiber amplifier which incorporates a short 5.1 m erbium doped fiber coil is described. Gain and noise figure measurements as a function of forward, backward and counter-propagating CW 1480 nm pumping schemes at different pump power levels are presented. Further, the Erbium Doped Fiber Amplifier (EDFA) power conversion efficien...

متن کامل

Tunable gain-clamped double-pass Erbium-doped fiber amplifier.

A tunable, gain-clamped (GC) double-pass Erbium-doped fiber amplifier (EDFA) with a linear laser-cavity configuration has been demonstrated. It solves the problems existing in the conventional linear-cavity GC-EDFA based on two fiber Bragg gratings (FBGs), in which the clamped-gain is very difficult to be tuned. In the new GC-EDFA, the lasing oscillation for clamping the gain is produced in a l...

متن کامل

Comparative Studies of the Thulium and Erbium Doped from 1480-1650 nm with Different Host Materials as Optical Fiber Amplifiers

This work describes the comparison of the amplification characteristics (gain) and the Noise figure (NF) of the Thulium and Erbium in three different host materials which the Yttria Alumina-Silica glass, Fluoride and Tellurite fiber glass. The gain using these host materials covers the range 1.45-1.65 μm. Thulium doped fiber amplifier (TDFAs) operated in the region of wavelength (1480-1510 nm) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011